Tanım : Sabit olmayan, birden fazla polinom un çarpımı biçimin de yazılamayan polinomlara indirgenemeyen polinomlar denir. Baş katsayısı bir olan indirgenemeyen polinomlar Asal polinomlar denir.
* P(x) = x2 + 4 , Q(x) = 3x2 + 1, R(x) = 2x – 3 , T(x) = - x + 7
Polinomları indirgenemeyen polinomlar dır.
P(x) = x2 + 4 baş katsayısı 1 olduğundan asal polinom dur.
Tanım : İçindeki değişkenlerin alabileceği her değer için doğru olan eşitliklere özdeşlik denir.
a) x3 (x2 – 2x) = x5 – 2x4
b) a2 (x + y)2 = a2 x2 + a2 y2 özdeşlik
c) a2 (x +y)2 = a2 x2 + a2 y2 özdeşlik değildir.
ÖNEMLİ ÖZDEŞLİKLER
I) Tam Kare Özdeşliği:
a) İki Terim Toplamının Karesi : (a + b)2 = a2 + 2ab + b2
b) İki Terim farkının Karesi : (a – b)2 = a2 – 2ab + b2
İki terim toplamının ve farkının karesi alınırken; birincinin karesi,birinci ile ikincinin iki katı, ikincinin karesi alınır.
c) Üç Terim Toplamının Karesi:
(a +b + c)2 = a2 + b2 + c2 + 2 (ab + ac + bc) şeklindedir.
II) İki Terim Toplamı veya Farkının Küpü :
a) İki Terim Toplamının Küpü : (a + b)3 = a3 + 3a2b + 3ab2 + b3
b) İki Terim Farkının Küpü : (a – b)3 = a3 – 3a2b + 3ab2 – b3
Birinci terimin küpü;( ) birincinin karesi ile ikincinin çarpımının 3 katı, (+) birinci ile ikincinin karesinin çarpımının 3 katı,( ) ikincinin küpü biçimindedir. Bu açılımlara Binom Açılımıda denir
Not:. Paskal Üçgeni kullanılarak 4.,5.,6.,...Dereceden iki terimlilerin özdeşliklerini de yazabiliriz.
III) İki Kare Farkı Özdeşliği: (a + b) (a – b) = a2 – b2
İki terim toplamı ile farkının çarpımı; birincinin karesi ile ikincinin karesinin farkına eşittir.
IV) xn + yn veya xn - yn biçimindeki polinomların Özdeşliği :
i)
a3 + b3 = (a + b) (a2 – ab + b2)
a3 – b3 = (a – b) (a2 + ab + b2)
ii)
a4 + b4 = (a + b) (a3 – a2b + ab2 – b3)
a4 – b4 = (a2 + b2) (a + b) (a – b)
iii)
a5 + b5 = (a + b) (a4 – a3b + a2 b2 – ab3 + b4)
a5 – b5 = (a – b) (a4 + a3b + a2 b2 + ab3 + b4)
iv)
a6 + b6 = (a + b) (a5 – a4b + a3 b2 – a2b3 + ab4 – b5)
a6 – b6 = (a – b) (a2 + ab + b2) (a+ b) (a2 + ab + b2)
v)
a7 + b7 = (a + b) (a6 – a5b + a4b2 – a3b3 + a2b4 – ab5 + b6)
a7 – b7 = (a – b) (a6 + a5b + a4b2 + a3b3 + a2b4 + ab5 + b6)
Özdeşlikleri aşağıdaki şekilleriyle düzenleyerek kullanabiliriz
1) x2 + y2 = (x + y)2 – 2xy
2) x2 + y2 = (x – y)2 + 2xy
3) (x – y)2 = (x + y)2 – 4xy
4) (x + y)2 = (x – y)2 + 4xy
5) x3 – y3 = (x – y)3 + 3xy (x – y)
6) x3 + y3 = (x + y)3 – 3xy (x + y)
7) x2 + y2 + z2 = (x + y + z)2 – 2 (xy + xz + yz)
1) İki sayının toplamı 17, kareleri toplamı 145 ise; bu sayıların çarpımı kaçtır?
x2 + y2 = (x + y)2 – 2xy 2ab = 289 – 145
145 = (17)2 – 2ab 2ab = 144 ab = 72 C= 72
2) a – b = 6 (a + b)2 = (a – b)2 + 4ab (a + b)2 = 44
a . b = 2 = ( 6 )2 + 4.2 (a + b) =
a + b = ? = 36 + 8 = 44
3) a – 2b = 3 ise; a2 + 4b2 = ? a2 + 4b2 = (a – 2b)2 +2. a2b
a . b = 2 = ( 3 )2 + 2. 2 .2 = 17
4) a + b = 12 ise; a . b = ? (a + b)2 = (a – b)2 + 4ab 4 ab = 108
a – b = 6 ( 12 )2 = ( 6 )2 + 4ab ab = 27
5)
m + n =8 x3 + y3 = (x + y)3 – 3xy(x + y)
m . n = 1 m3 + n3 = (m + n)3 – 3mn (m + n)
m3 + n3 = ? = ( 8 )3 – 3 . 1 . 8 = 488
6)
a3 – b3 = 50 x3 – y3 = (x – y)3 + 3xy(x – y)
a – b = 2 ise; a3 – b3 = (a – b)3 + 3ab(a – b)
a . b = ? 50 = 8 + 6ab 6ab = 42 ab = 7
7)
x3 – y3 = (x – y)3 + 3xy(x – y)
= ( 3 )3 + 3.1.( 3 ) = 36
10) ise; x3 + y3 = (x + y)3 – 3xy(x + y)
198
a + b + c = ? a2 + b2 + c2 = (a + b + c) – 2(ab + aç + bc)
ab + ac + bc = 12 = ( 7 )2 – 2 ( 12 )
a2 + b2 + c2 = ? = 49 – 24 = 25
ÇARPANLARA AYIRMA KURALLARI
1) Ortak Çarpan Parantezine Alarak Çarpanlara Ayırma :
Her terimde ortak olarak bulunan çarpan, parantez dışına alınır. Her terimin ortak çarpana bölümü parantez içine yazılır.
1) Aşağıdaki ifadeleri Çarpanlarına ayırınız. bilgiyelpazesi.net
a) 3a + 3b = 3(a + b)
b) 5m – 10mn = 5m (1 – 2)
c) 12x + 9y =3(4x + 3y)
d) 3a2b – 2ab2 = ab (3a – 2b)
e) 3ax + 3ay – 3az
f) (a – b) x + 3 (a – b)
g) (m – n) – (a + b)(m – n)
h) – a – b – x2 (a + b)
ı) x2(p – 3) + ma2 (3 – p)
i) 1 – 2x + m (2x – 1)
2) Gruplandırma Yaparak Çarpanlara Ayırma :
Bütün terimlerde ortak çarpan yoksa, terimler ikişer, ikişer, üçer, üçer guruplandırılır. Gruplar ayrı, ayrı ortak çarpanlarına ayrılır.
2)
a) mx + ny + my + nx
b) xy – xb – yb + b2
c) x4 – 4 + 2x3 – 2x
d) 2x2 –3x – 6xy + 9y
e) x3 – x + 1 – x2
f) x4 – x + x3 – 1
g) ab(c2 – d2) – cd (a2 – b2)
h) ac2 + 3c – bc – 2ac – 6 + 2b
ı) mn(zi + y2) + zy (m2 + n2)
i) a2b2 + 1 – (a2 + b2)
3) Tam Kare şeklindeki İfadeleri Çarpanlara Ayırma :
Polinom üç terimli ise, ilk ve son terimin kare köklerinin çarpımı nın iki katı ortadaki terimi veriyorsa, bu tam kare şeklinde ifadedir
a2 + 2ab + b2 = (a + b)2, a2 – 2ab + b2 = (a – b)2
3)
a) x2 + 4xb + 4b2
b) 4a2 + 12ab + 9b2
c) 4a2b2 – 4abc + c2
4)
a) a2b + 8ab +16b3
b) 2m3 – 28m2 +98m
c) 4x3y – 12x2y2 + 9xy3
4) İki Kare Farkı Şeklindeki İfadeleri Çarpanlara Ayırma :
Polinom iki terimli , işaretleri farklı, kare kökleri alınıyorsa; Bu Polinom iki kare farkı biçiminde çarpanlarına ayrılır.
a2 – b2 = (a + b) (a – b)
5) a) 25 – 9a2b2
b) x4 – 1
c) (m – n)2 – (m + n)2
6) a) 18x2 – 2y2
b) 2a2b3 – 32b
c) 12x3y – 75xy5
7)
a) 9a2 – 6a +1 – b2
b) x2 – 12x + 36 – 4y2
c)16m2 – n2 – 6n – 9
d)1 – x2 – 2xy – y2
e) m2 – n2 – 3m + 3n
f) a2 – 25b2 – a + 5b
g) a2 – 4m2 – 12mn – 9n2
h) 9a2 –16m4 – 12axy + 4x2y2
5) İki Küp Toplamı - Farkı İfadeleri Çarpanlara Ayırma:
a3 + b3 = (a + b) (a2 – ab + b2) , a3 – b3 = (a – b) (a2 + ab + b2)
a) a3 + 8
b) 8 – m3
c) x3 + 1
d) 27a3 – 64
e) x3a3 + b3
9) a) 81m3 – 3n3
b) 24x3y – 3y
c) 2x + 54x4
10) a) (x +y)3 – 8
b) a3 + 8(a - b)3
c) (m – n)3 + 1
6) xn yn biçimindeki polinomları Çarpanlara Ayırma:
11)
a) x4 + 1 = (x + 1) (x3 – x2 + x – 1)
b) x4 – 1 = (x2 + 1) (x + 1) (x – 1)
c) x5 + 25 = (x + 2) (x4 – 2x3 + 4x2 – 8x + 16)
d) x5 – 1 = (x – 1) (x4 + x3 + x2 + x + 1)
7) Bir Terim Ekleyip Çıkararak Çarpanlara Ayırma:
Verilen İfade uygun bir terim ekleme ve çıkarma yolu ile tam kare ve iki kare farkı şeklinde çarpanlara ayırma işlemine benzetilir
12) 4x4 + 7x2 + 4 ifadesini Çarpanlarına ayırınız.
4x4 + 7x2 + 4 = 4x4 + 7x2 + 4 + x2 – x2 = 4x4 + 8x2 + 4– x2
= (2x2 + 2)2 – x2
2x2 = (2x2 + 2 – x) (2x2 + 2 + x)
2.2x2.2 = 8x2 = (2x2 – x + 2) (2x2 + x + 2)
13) x2 – 6x + 5 ifadesini x’li terimin kat sayısının yarısının karesini ekleyip-çıkararak çarpanlarına ayırınız.
x2 – 6x + 5 + 32 – 32 = (x2 – 6x + 32) – 32 + 5 = (x – 3)2 – 4
= (x – 3 – 2) (x – 3 + 2) = (x – 5) (x – 1)
14)
a) m2 + 2m – 24
b) a4 + a2 + 1
c) 16a4 + 4a2b2 + b4
d) a2 – 6ab + 8b2 +2b – 1
(Not: b2 yi bir ekleyip - çıkar )
x2 + bx + c şeklindeki üç terimlileri Çarpanlarına Ayırma :
15)
a) x2 + 5x + 6
b) x2 – 5x + 6
c) x2 + 7x + 6
d) x2 – 7x + 6
e) x2 + 5x – 6
f) x2 – 5x – 6 g) x2 + x – 6
h) x2 – x – 6
ı) x2 – 7x – 18
i) x4 – x2 – 30
k) m2 – 6m – 27
l) x2 – 3xy – 10y2
m) –x2 – 2x + 3
n) x2 – 13x + 30
o) x2 + 2y2– 3xy