Geometrinin Tarihçesi

tarantula90113.10.2010 - 02:02
Geometri (Grekçe: γεωμετρία; geo- "dünya", -metron "ölçüm" kelimesinden gelmektedir.), mekansal ilişkilerle ilgilenen bilgi alanı olarak ortaya çıkmıştır. Geometri, modern öncesi matematiğin iki alanından biriydi, diğeri ise sayıların incelenmesi yani aritmetikti.

Klasik geometri, pusula ve düz kenarlı cetvelle çizimlere odaklandı. Geometri, matematiksel kesinliği ve bugün hala kullanılmakta olan aksiyomatik yöntemi tanıtan Öklid tarafından kökten değiştirildi. Elemanlar (İngilizce: The Elements) adlı kitabı, tüm zamanların en etkili ders kitabı olarak kabul edilmekte ve 20. yüzyılın ortalarına kadar Batı'daki tüm eğitimli insanlar tarafından bilinmektedir.[1]

Modern zamanlarda, geometrik kavramlar yüksek bir soyutlama ve karmaşıklık düzeyine genelleştirildi ve kalkülüs ile soyut cebir yöntemlerine tabi tutuldu, böylece alanın birçok modern dalı, erken geometrinin torunları olarak zar zor fark edilebilir.

Erken geometri
Geometrinin başlangıcına dair en erken kayıt, antik İndus Vadisi'nde (bkz. Harappan matematiği) ve antik Babil'de (bkz. Babil matematiği) geniş açılı üçgenleri keşfeden ilk halklara kadar, MÖ 3000 civarına dayandırılabilir. Erken geometri, ölçüm, inşaat, astronomi ve çeşitli el sanatlarındaki bazı pratik ihtiyaçları karşılamak için geliştirilen, uzunluklar, açılar, alanlar ve hacimlerle ilgili deneysel olarak keşfedilmiş ilkelerin bir koleksiyonuydu. Bunların arasında şaşırtıcı derecede sofistike ilkeler de vardı ve modern bir matematikçinin hesap ve cebir kullanmadan bazılarını elde etmesi zor olabilir. Örneğin, hem Mısırlılar hem de Babilliler, Pisagor teoremini, Pisagor'dan yaklaşık 1500 yıl önce haberdardı ve MÖ 800 civarında Hint Sulba Sutraları teoremin ilk ifadelerini içeriyordu; Mısırlılar, bir kare piramidin kesikli kısmının hacmi için doğru bir formüle sahipti.

Babil geometrisi
Ana madde: Babil matematiği
Babilliler, alanları ve hacimleri ölçmek için genel kuralları biliyor olabilirler. Bir çemberin çevresini çapın üç katı ve alanı, çevrenin karesinin on ikide biri olarak ölçtüler ki bu hesap, π yaklaşık 3 olarak alınırsa doğru olur. Bir silindirin hacmi, tabanın ​​ve yüksekliğin çarpımı olarak alındı, bununla birlikte, bir koninin veya kare piramidin kesik kısmının hacmi, yüksekliğin ve tabanların toplamının yarısının çarpımı olarak yanlış bir şekilde hesaplanmıştır. Pisagor teoremi, Babilliler tarafından da biliniyordu. Ayrıca, bir tablette π'nin 3 ve 1/8 olarak kullanıldığı yeni bir keşif yapıldı. Babilliler, günümüzde yaklaşık yedi mile eşit bir mesafe ölçüsü olan Babil miliyle de bilinirler. Mesafeler için yapılan bu ölçüm, sonunda Güneş'in seyahatini ölçmek için kullanılan bir zaman miline dönüştürüldü, dolayısıyla zamanı temsil etti.[5] Eski Babillilerin astronomik geometriyi Avrupalılardan yaklaşık 1400 yıl önce keşfetmiş olabileceklerini gösteren yeni keşifler yapılmıştır.



Linkback: https://www.buyuknet.com/geometrinin-tarihcesi-t22737.0.html


tarantula90121.10.2010 - 19:12
Cebir tekniklerinin geometriye uygulanması, noktaları sayılara veya koordinatlara bağlayarak bütün eğrileri hesaplamak ve saptamak olanağı sağlayan analitik geometri'yi doğurdu (Descartes).



Rönesans Ressamları ve Tasarı Geometri



Tasarı geometri'de, uzay geometrinin şekilleri veya öğeleri, tam ve aslına uygun biçimde bir düzleme (üzerine şekil çizilen kâğıt) aktarılır. Rönesans'ın büyük ressam ve mimarları tasarı geometriden yararlanmışlarsa da, onu gerçek bir matematik sistemi haline getiren (temel geometri, kaba perspektif), matematikçi Monge olmuştur.



İzdüşüm geometrisi (bir şeklin herhangi bir noktasını esas alarak tümünü bir düzleme izdüşümle aktarmak), resim ve süsleme sanatı için de çok önemlidir. Ama asıl yeri, aksiyomları ve ilişkileri bakımından izdüşüm geometrisi, matematiğin bir dalıdır.



Saf (Katıksız) Geometri



Geometride, her yerde geçerli kesin belirlemeler giderek azalmakta, başlangıç aksiyomları artık sadece belirli bir geometri için doğru sayılmaktadır. Burada gerçek olan başka bir yerde yanlış olabilir. Her şeye rağmen, maddi gerçeklerin incelenmesinde uygulamalı geometrinin sağladığı olanaklar sonsuzdur.



Yüzölçümü hesaplanmak istenen bir tarlanın çizgisel taslağından tutun da gökcisimlerinin yörüngelerinin saptanmasına, haritalara, planlara, coğrafyada kullanılan ölçeklere, makine yapımına, mimarlığa varıncaya kadar, geometri bilgisinin mutlaka gerekli olduğu alan pek çok ve geniştir.



Bununla birlikte, matematik çalışmaları daha ileriyi, uzak geleceği de göz önünde tutar. Hemen yararlanma kaygısına kapılmadan yapılan matematik araştırmalar saymakla bitmez. Bu çalışmalar, doğruluğu mevcut koşullara bağlı olmayan kusursuz örnekler yaratma amacı güder. Saf geometrinin esası budur.



Thales



Ünlü bir bilgin ve filozof olan (Yunanistan'ın Yedi Bilge'sinden biridir) Miletoslu Thales (M.Ö. 640-562), düzlem geometrinin ilk teoremlerini hazırladı. Thales, bir yapının yüksekliğini, onun gölgesini ölçerek hesaplayabiliyordu.



Pithagoras



«Birdik üçgende, hipotenüs (dik açının karşısındaki kenar) üzerine kurulan kare öteki iki kenar üzerine kurulan karelerin toplamına eşittir»: bu teoremi M.Ö. VI. yy.da yaşamış ünlü Yunan filozof ve matematikçisi Pithagoras bulmuştur. Çarpım tablosunu ve telli çalgılarda gamı icat eden de odur.



Monge



Tasarı geometrinin yaratıcısı ve analitik geometrinin büyük kuramcısı Gaspard Monge (1746-1818), bütün XIX. yy. matematikçilerinin eşsiz ustasıdır.







Bir İtalyan matematikçisi olan Fra Luca Pacioli (1445-1510), öğrencilerine Eukleides geometrisini anlatıyor. Capodimonte Müzesi, Napoli.



 



«İzzo 22» (1968), Vasarely'nin bir düzenlemesi. Düzlem geometrinin temel biçimlerinden hareyi esas alan sanatçı, öylesine iç içe hacimler ve gölge oyunları yaratmış ki, düzenlemeye bakarken alışageldiğimiz biçimleri göremez oluyoruz. Denise-Rene Galerisi, Paris.



 XVI. yy.da basılmış bir geometri kitabına göre, geometrinin bir uygulama alanı: bir fıçıdaki eğilimlerin açı hesabıyla ölçülmesi, bir gemi planının çizilmesine olanak sağlar.

Etiket:

Bu bilgi size yardimci oldu mu?

EvetHayır
Geometrinin Tarihçesi
Geometrinin Tarihçesi
(Ortalama: 5 üzerinden 2.5 - 2 Oy)
2